Technical insight on the requirements for CO2-saturated growth of microalgae in photobioreactors

نویسندگان

  • Yuvraj
  • Padmini Padmanabhan
چکیده

Microalgal cultures are usually sparged with CO2-enriched air to preclude CO2 limitation during photoautotrophic growth. However, the CO2 vol% specifically required at operating conditions to meet the carbon requirement of algal cells in photobioreactor is never determined and 1-10% v/v CO2-enriched air is arbitrarily used. A scheme is proposed and experimentally validated for Chlorella vulgaris that allows computing CO2-saturated growth feasible at given CO2 vol% and volumetric O2 mass-transfer coefficient (k L a)O. CO2 sufficiency in an experiment can be theoretically established to adjust conditions for CO2-saturated growth. The methodology completely eliminates the requirement of CO2 electrode for online estimation of dissolved CO2 to determine critical CO2 concentration (Ccrit), specific CO2 uptake rate (SCUR), and volumetric CO2 mass-transfer coefficient (k L a)C required for the governing CO2 mass-transfer equation. Ccrit was estimated from specific O2 production rate (SOPR) measurements at different dissolved CO2 concentrations. SCUR was calculated from SOPR and photosynthetic quotient (PQ) determined from the balanced stoichiometric equation of growth. Effect of light attenuation and nutrient depletion on biomass estimate is also discussed. Furthermore, a simple design of photosynthetic activity measurement system was used, which minimizes light attenuation by hanging a low depth (ca. 10 mm) culture over the light source.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CO2 biofixation by Dunaliella Salina in batch and semi-continuous cultivations, using hydrophobic and hydrophilic poly ethylene (PE) hollow fiber membrane photobioreactors

In this work, performance of hollow fiber membrane photobioreactor (HFMPB) on the growth of Dunaliella Salina (G26) at various aeration rates (0.1 and 0.2 VVm) and medium re-circulation flow rates (500 and 1000 mL/h) were studied. Cultivation was carried out at both batch and semi-continuous modes in HFMPBs containing neat and hydrophilized in-house fabricated poly ethylene (PE) membranes at fi...

متن کامل

Feasibility of CO2 mitigation and carbohydrate production by microalga Scenedesmus obliquus CNW-N used for bioethanol fermentation under outdoor conditions: effects of seasonal changes

BACKGROUND Although outdoor cultivation systems have been widely used for mass production of microalgae at a relatively low cost, there are still limited efforts on outdoor cultivation of carbohydrate-rich microalgae that were further used as feedstock for fermentative bioethanol production. In particular, the effects of seasonal changes on cell growth, CO2 fixation, and carbohydrate production...

متن کامل

Overview of the potential of microalgae for CO2 sequestration

An economic and environmentally friendly approach of overcoming the problem of fossil CO2 emissions would be to reuse it through fixation into biomass. Carbon dioxide (CO2), which is the basis for the formation of complex sugars by green plants and microalgae through photosynthesis, has been shown to significantly increase the growth rates of certain microalgal species. Microalgae possess a gre...

متن کامل

Biofixation of CO2 from synthetic combustion gas using cultivated microalgae in three-stage serial tubular photobioreactors.

Coal is the most abundant of the fossil fuels, with reserves estimated at 102 billions of tons. The feasibility of using coal as a fuel depends upon reducing emissions of gas when it is burnt, such as carbon dioxide (CO2), sulfur oxides (SO(x)), and nitrogen oxides (NO(x)). The removal of CO2 with microalgae may be one of the most efficient ways of reducing this gas, without the need for radica...

متن کامل

Physics-based microalgae growth modelling and control for a vertical flat panel photobioreactor

Article Type: Full Length Research Article Microalgae have the potential to produce enough biofuels to meet current US fuel demands. In order to achieve this potential, photobioreactors (PBRs) that are efficient, scalable, and affordable need to be developed. Models are an analytical tool that can be used to evaluate various PBRs. In this article, a physics-based dynamic model was developed for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017